COMPREHENSIVELY ANALYZING THE IMPACT OF CYBERATTACKS ON POWER GRIDS

LENNART BADERMARTIN SERROROLAV LAMBERTSÖMER SENDENNIS VAN DER VELDEIMMANUEL HACKERJULIAN FILTERELMAR PADILLAMARTIN HENZE

🗾 Fraunhofer

FKIE

https://github.com/fkie-cad/wattson

Digitized Power Grids are Vulnerable

© Fraunhofer FKIE

2

This graphic uses resources from flaticon.com

Digitized Power Grids are Vulnerable

© Fraunhofer FKIE

This graphic uses resources from flaticon.com

lennart.bader@fkie.fraunhofer.de

FKIE

Vulnerabilities and Common Attacks

© Fraunhofer FKIE

Compelling target Critical infrastructure Physical consequences

Physical access Unmanned facilities

- Geographic scale
- Multiple actors

Attack Type

Phys.

Syn.

Sem.

Limited security

Encryption, authentication

Power Grid

[24], [41], [54], [85]

Network segmentation Ö

Multiple attack types in related work

- Demand manipulation
- Denial of service
- Control command issuance

Isolated evaluations

- Mostly focus on one attack type / class
- Mostly considering only one domain (power grid or network)

Sophisticated cross-domain evaluations of effects of cyberattacks missing

Lennart Bader

lennart.bader@fkie.fraunhofer.de

	Device Disconnect	[36], [91]	
	Demand Manipulation		[37], [90] [89], [103]
	Denial-of-Service	[3], [13], [66] [108], [92]	[92] , [2], [30] [33], [56], [109]
	Replay –	[51], [62], [107]	[39], [109], [112]
		[79]	[2], [39], [99]
	False Data Injection	ⁿ [13], [43], [45] ⁿ [44], [51], [102]	[2], [19], [56], [77] [17], [47], [61], [111]

ICT

Methods for Realistic Cross-Domain Evaluations of Cyberattacks

The real power grid

Maximum realism +

Risky

- Expensive
- Infeasible

- Great realism
- **Real devices**
- Limited scalability
- Inflexible topologies
- Costly

- Good realism
- Scenarios flexibility
- **Scalability**
- Realism depends on model
- Abstraction

Existing simulation environments

- Often specific focus / use case
 - No real network traffic
 - Insufficient accuracy (for one domain)
 - Limited scalability
- Usage of proprietary hard- or software
 - Limited availability

Our proposal

- **Open source** ٠
- Co-simulation environment
- Cybersecurity focus

Wattson: A Cybersecurity Research Testbed for Power Grids

- Network emulation co
 - Containernet-based
 - Realistic network traffic down to Layer 2
- Power grid simulation Pandapower-based
 - Static on-demand power flow computation

- Transparent coordination
 - Interactions between ICT and grid components
- Cybersecurity research utilities
 - Attacks, analyses, configurations

© Fraunhofer FKIE

Wattson: A Cybersecurity Research Testbed for Power Grids

https://github.com/fkie-cad/wattson

- Network emulation Containernet-based
 - Realistic network traffic down to Layer 2
- Power grid simulation Pandapower-based
 - Static on-demand power flow computation

Transparent coordination

- Interactions between ICT and grid components
- Cybersecurity research utilities
 - Attacks, analyses, configurations

Wattson is Accurate and Scalable

Validation against laboratory grid at RWTH Aachen Univ.

FKIE

Fraunhofer

Wattson is Accurate and Scalable

- **Recreate laboratory topology and scenario in Wattson**
 - Normal behavior
 - MitM-based attack
 - Compare laboratory and simulation

Accurately matching behavior under normal and attack conditions

© Martin Braun

Scalability

- We evaluated Wattson's scalability with synthetic and reference power grid topologies
- Suitable performance for evaluating cyberattacks
- Scales to realistic grid sizes

Evaluating Cyberattacks against Power Grids with Wattson

Destruction of equipment

Physical Attack

- Destruction of substation
 - Power grid assets
 - ICT equipment

0101 Interference with **0011** network traffic

Flooding

- TCP SYN flooding
- Affects multiple RTUs
- Saturation of network links

ARP Spoofing

- Targeted denial of service
- Interrupt RTU connections
- Loss of visibility
- Loss of controllability

Manipulation of application layer traffic

Industroyer

- Secondary IEC 104 client
- Issues control commands
- Disconnects large parts of the power grid

False Data Injection

- MitM-based attack
- Measurements manipulation
- Command injection
- Live and transparent

Evaluating Cyberattacks against Power Grids with Wattson

Destruction of equipment

Physical Attack

- Destruction of substation
 - Power grid assets
 - ICT equipment

0101 Interference with **0011** network traffic

Flooding

- TCP SYN flooding
- Affects multiple RTUs
- Saturation of network links

Manipulation of application layer traffic

Industroyer

- Secondary IEC 104 client
- Issues control commands
- Disconnects large parts of the power grid

ARP Spoofing

- Targeted denial of service
- Interrupt RTU connections
- Loss of visibility
- Loss of controllability

False Data Injection

- MitM-based attack
- Measurements manipulation
- Command injection
- Live and transparent

False Data Injection Attack: Scenario

	Attack Phases MitM via ARP spoof Learn SEQ/ACK (TCP) and SSN/RSN (IEC 104) 	$\overline{\mathbf{S}}$	
	 Eavesdropping & recording Learn measurement values & store hist 	.ory	
	 Command Injection Inject control commands into active connection 		
*	 Freezing Manipulate measurements to represent former grid state 	*	Simbench semi-urban medium-voltage scenario ~ 110 substations, 119 RTUs Represents a district

This graphic uses resources from flaticon.com

© Fraunhofer FKIE

This graphic uses resources from flaticon.com

Conclusion

Power grids as targets for cyberattacks

Digitized cyber physical system and critical infrastructure

Evaluation of attacks and their effects

- Co-simulation framework
- Cybersecurity research focus
- Evaluated attacks highlight potential vulnerabilities

Various applications for Wattson •

WATT

COMPREHENSIVELY ANALYZING THE IMPACT OF CYBERATTACKS ON POWER GRIDS

LENNART BADERMARTIN SERROROLAV LAMBERTSÖMER SENDENNIS VAN DER VELDEIMMANUEL HACKERJULIAN FILTERELMAR PADILLAMARTIN HENZE

🗾 Fraunhofer

FKIE

https://github.com/fkie-cad/wattson

